
Babel: Creating Math Expressions

What is Babel?

Babel is keyboard-based mathematical expression language that will be used to describe math

functions during problem formulation. Simple math functions can be described with +, –, *, /, etc.

However, interacting with variables and more complex math functions requires the use of subtle

and non-obvious operators, functions, and symbols. Babel provides a set of keywords and

functions that allow you to describe complex functions and interact with variables.

Usage Overview

Some general characteristics of babel expressions is as follows:

 Similar to many modern programming languages, whitespace characters such as tabs,

spaces, and newlines are ignored. This allows the author to format code in the most

readable way without changing the meaning of the expression.

 Babel supports the most common operators and functions, such as +, -, *, and /. A complete

list is provided below, as well as keywords for functions that are non-obvious such as sin

for the sine function and ln for the natural logarithm. A complete list of these functions

and operators is in the next four sections.

 Variable names must consist of only letters, number, and underscores. A variable name

cannot start with a number. Variables and the names of functions are case sensitive.

 Babel uses IEEE 754 defined 64-bit precision floating point numbers. This means that for

most cases it preserves values well, but all mathematic expressions are subject to rounding

error, particularly when the domain mixes very large and very small values and

transcendental functions.

 Variables may be created and used across multiple statements, using var as the first word

and semi-colons to separate multiple lines. The last line must be an expression, not a

statement.

 Babel expressions are evaluated according to common mathematic order of operations,

with functions taking the same precedence as brackets. It is generally advisable that if any

portion of an expression is unclear, the user may add brackets to clarify what should be

evaluated first.

o A note on exponentiation: negation has a higher precedence than exponentiation,

which is similar to Excel but dissimilar from MATLAB. Thus, -3^2 is interpreted

as (-3)^2 = 9, and is NOT interpreted as –(3^2) = -9.

Babel expressions are only the right-hand side of a mathematical function. For example:

Figure 1: Babel Expression Interface

Note that because the value f1 is entered in the Function Name text box, it is implied that the value

of f1 is the result of evaluating the expression below for the given values of x1 and x2. Thus, it

is both unnecessary and invalid to write f1 = x1 + cos(x2)

Multiple Statements

Babel supports the creation of temporary variables and their use in multiple statements.

Figure 2 Example of three babel statements

Variables created in this way can be accessed locally within the expression block but not by any

other expressions. They cannot be accessed as dynamic variables with var[expr].

Static Variable Access

Variables can be accessed simply by typing their names. For example, assuming you had declared

the variables X1, X2, and x3 (note the case-sensitivity here), the following are legal babel

expressions:

X1

X2 + x3

Dynamic Variable Access

In some cases, it may be preferable to access variables as numbered entities in a list rather than by

their names. We call this dynamic variable access. Babel exposes this functionality through an

implied list or array of variables called var. When writing a Babel expression, one can retrieve a

value from this list through the index operator: [exprI]. The index expression exprI is an expression

that will retrieve exprI
 th variable from the list of variables as ordered in the problem setup screen.

Generally, use of var takes the form:

 var [exprI]

Where exprI is an expression that generates an index into the list of variables. In the simplest case,

exprI can be a literal integer, like 4, giving var[4], which would be interpreted as the value of the

4th variable declared on the problem setup screen. If the user writes a more complex expression for

exprI, the result is rounded to the nearest integer.

Figure 3: Function Containing a Dynamic Variable Access (var) Expression

Given the following example setup:

Table 1: Example uses of Var

var[1] Retrieves the value for x_first when being evaluated

var[3] Retrieves the value for x3 when being evaluated

var[1 + 4] Retrieves the value for x5 when being evaluated. This

example illustrates that the value inside the square brackets

may be any arbitrary expression.

var[ceil(ln(x_first)) + 2] Retrieves the value:

 x3 if x_first is between 0 and 2.718 (e)

 x4 if x_first is between 2.718 and 7.38

 x5 if x_first is between 7.38 and 10

This example illustrates that functions may be performed on

indexes to achieve some kind of distribution. Care must be

taken in making sure the result of the expression is greater

than 1 and less than or equal to the count of the variables.

var [
 min(
 ceil(
 x_first ^ X_second,
),
 50
)
]
// one may use whitespace
// to format as they see
fit
// for readability

Retrieves the value:

 x_first if x_first raised to X_second is less than or

equal to 1.0 (given the bounds of the variables it is

not possible for (x_first)X_Second to be less than 0).

 X_second if x_first raised to X_second is between

1.0 and 2.0

 x3 if x_first raised to X_second is between 2.0 and

3.0

 (theoretical) x50 if x_first raised to X_second any

value greater than 49.

It is illegal to write var[0], or var[expr] where expr evaluates to a value that is less than 1 or

greater than the number of variables declared in the problem setup.

The main use case for var is for sum and prod, see Loops with sum and prod

Binary Operators

Many of the common binary operators are supported within babel.

Table 2: list of binary operators

exprL + exprR Addition, evaluates to the sum of exprL and exprR

exprL - exprR Subtraction, evaluates to the difference between exprL and exprR

exprL * exprR Multiplication, evaluates to the product of exprL and exprR

exprL / exprR Division, evaluates to the quotient of exprL and exprR

exprL ^ (exprR1)

exprL ^ exprR2

Exponentiation, evaluates to the exprL raised to the power of exprR.

Note 1: Exponentiation of decimal values is supported. Negative base

numbers raised to decimal exponentiation will trigger the error flow

resulting in NaN.

Note 2: Negation of exprL as a higher precedence than

exponentiation, meaning -3^2 is interpreted as (-3)^2 which is 9.

exprL % exprR Modulus, the remainder from dividing exprL by exprR

exprL < exprR Strictly-less, true if exprL is less than (but not equal to) exprR

exprL <= exprR Less-or-equal, true if exprL is less than or equal to exprR

exprL > exprR Strictly-greater, true if exprL is greater than (but not equal to) exprR.

exprL >= exprR Greater-or-Equal, true if exprL is greater than or equal to exprR

Note that the boolean (true/false) operations are only supported for constraint expressions and only

at the top-level. Thus, the expression x1 > (x2 + 2) is valid for a constraint function, but the

expression (x1 > x2) + 2 is not valid in any context.

Binary Functions

Babel supports two binary functions:

Table 3: List of Binary Functions

min(exprL, exprR) The lowest value resulting from exprL or exprR

max(exprL, exprR) The highest value resulting from the exprL or exprR

log(exprB, exprN) The logarithm of exprN with base exprB

Unary Operators

Babel supports negation as a unary operator

Table 4: List of Unary Operators

-expr The negated value of the expression, equivalent to -1 * expr

Unary Functions

Many common math concepts are expressed as unary functions in Babel.

Table 5: List of Unary Functions

sin(expr) the sine value of expr, with expr assumed to be in radians

cos(expr) the cosine value of expr, with expr assumed to be in radians

tan(expr) the tangent value of expr, with expr assumed to be in radians

asin(expr) the arc-sine value of expr, with expr assumed to be in radians

acos(expr) the arc-cosine value of expr, with expr assumed to be in radians

atan(expr) the arc-tangent value of expr, with expr assumed to be in radians

sinh(expr) the hyperbolic tangent value of expr

cosh(expr) the hyperbolic cosine value of expr

tanh(expr) the hyperbolic tangent value of expr

cot(expr) the cotangent value of expr, with expr assumed to be in radians

ln(expr) the natural logarithm of expr (log base e of expr)

log(expr) the decimal logarithm of expr (log base 10 of expr)

abs(expr) the absolute value of expr

sqrt(expr) the square root of expr

cbrt(expr) the cube root of expr

sqr(expr) the value of expr to the power of 2

cube(expr) the value of expr to the power of 3

ceil(expr) the lowest integer value greater than expr

floor(expr) the highest integer value lower than expr

sign(expr) the sign of expr

Loops with sum and prod

It is often desirable to take the sum or product of a set of values, applying a uniform function to
each value first. This is done frequently in mathematics and typically denoted by capitol sigma
and capitol pi.

For example:

[(𝑥 − 𝑥) + (𝑥 − 1)]

We can express this in babel as

sum(
 1,
 50,
 i -> (
 (var[2*i - 1]^2 – var[2*i])^2
 + (var[2*i-1] - 1)^2
)
)

The two functions within babel that perform aggregation (ie ‘loops’) are sum and prod:

Table 6: sum and prod details

sum(

 exprL,

 exprU,

 indexAlias -> exprA

)

Adds the results from running exprA once for each integer

value indexAlias in the inclusive range [exprL, exprU]

together.

prod(

 exprL,

 exprU,

 indexAlias -> exprA

)

Multiplies the results from running exprA once for each

integer value indexAlias in the inclusive range [exprL,

exprU] together.

exprL is the lower bound expression, and exprU is the upper bound expression

For each evaluation of exprA, a new variable with the name specified in indexAlias is given a

value in the range. The variable (not expression) defined in indexAlias is only available to

exprA, and must follow the variable name guidelines. In this sense, sum and prod allow us to

specify a new temporary variable that may be given many different values on any one

objective or constraint evaluation.

A typical value for indexAlias is simply the i, for example:

 sum(1, 10, i -> x1 * i)

indexAlias can be any valid variable name. It is often best to pick a name that makes sense in

the context of the model.

EG, if the 7th through 12th variables were TRUSS lengths, it might make sense to use the variable

TRUSS_ID:

 prod(7, 12, TRUSS_ID ->

 ciel(var[TRUSS_ID] * sqrt(desity_var))

)

It can also be a mathematically-understood unicode text such as β, for example:

 sum(1, ceil(sqrt(target)), β -> x1 + var[ciel(sqrt(β)) + x4]))

It is illegal to write sum(5, 4, …) or, more generally, sum(exprL, exprU, …) where exprL

evaluates to a value that is less than exprU.

It is legal to write a sum or product that is expressed over a zero range, that is a range in which the

upper and lower bounds are equal.

 sum(exprL, exprU, indexAlias -> exprA), where exprL is equal to exprU, (eg sum(x1 +

2, 2 + x1, …)), and will evaluate to the value 0.0.

 Similarly, prod(exprL, exprU, indexAlias -> exprA) (eg prod(5, 5, …)) will evaluate

to 1.0.

Example: Arithmetic Series

Mathematics:

𝑖

Babel with sum/prod:

 sum(1, 10, i -> i)

Long form Babel:

 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

Example: Geometric Series

Mathematics:

1

2

⌈ ⌉

Babe with sum/prod:

sum(1, ceil(ln(highValue)/ln(2)), nextTerm -> 1 / 2^nextTerm)

Long form Babel:

1 / 2^1 + 1/2^2 + 1/2^3 + [...] + 1/2^(ceil(ln(highValue)/ln(2)) - 1) +

1/2^(ciel(ln(highValue)/ln(2)))

Known Constants

There are some constants which are already in the Babel library, so a user doesn’t have to type out

their value manually.

Table 8: List of Constants

pi 3.141592653589793

e 2.718281828459045

