Babel: Creating Math Expressions

What is Babel?

Babel is keyboard-based mathematical expression language that will be used to describe math functions during problem formulation. Simple math functions can be described with $+,-{ }^{*}, /$, etc. However, interacting with variables and more complex math functions requires the use of subtle and non-obvious operators, functions, and symbols. Babel provides a set of keywords and functions that allow you to describe complex functions and interact with variables.

Usage Overview

Some general characteristics of babel expressions is as follows:

- Similar to many modern programming languages, whitespace characters such as tabs, spaces, and newlines are ignored. This allows the author to format code in the most readable way without changing the meaning of the expression.
- Babel supports the most common operators and functions, such as,,+- , , and /. A complete list is provided below, as well as keywords for functions that are non-obvious such as sin for the sine function and \ln for the natural logarithm. A complete list of these functions and operators is in the next four sections.
- Variable names must consist of only letters, number, and underscores. A variable name cannot start with a number. Variables and the names of functions are case sensitive.
- Babel uses IEEE 754 defined 64-bit precision floating point numbers. This means that for most cases it preserves values well, but all mathematic expressions are subject to rounding error, particularly when the domain mixes very large and very small values and transcendental functions.
- Variables may be created and used across multiple statements, using var as the first word and semi-colons to separate multiple lines. The last line must be an expression, not a statement.
- Babel expressions are evaluated according to common mathematic order of operations, with functions taking the same precedence as brackets. It is generally advisable that if any portion of an expression is unclear, the user may add brackets to clarify what should be evaluated first.
- A note on exponentiation: negation has a higher precedence than exponentiation, which is similar to Excel but dissimilar from MATLAB. Thus, $-3^{\wedge} 2$ is interpreted as $(-3)^{\wedge} 2=9$, and is NOT interpreted as $-\left(3^{\wedge} 2\right)=-9$.

Babel expressions are only the right-hand side of a mathematical function. For example:

Figure 1: Babel Expression Interface
Note that because the value f 1 is entered in the Function Name text box, it is implied that the value of $f 1$ is the result of evaluating the expression below for the given values of $x 1$ and $\times 2$. Thus, it is both unnecessary and invalid to write $\underline{f 1=x 1}+\cos (x 2)$

Multiple Statements

Babel supports the creation of temporary variables and their use in multiple statements.

```
Expression
var temp = 3*x1 / (2*x2^2);
var INTERESTING = 45;
return temp*INTERESTING / length;|
```

Figure 2 Example of three babel statements
Variables created in this way can be accessed locally within the expression block but not by any other expressions. They cannot be accessed as dynamic variables with var [expr].

Static Variable Access

Variables can be accessed simply by typing their names. For example, assuming you had declared the variables $\mathrm{X} 1, \mathrm{X} 2$, and $\times 3$ (note the case-sensitivity here), the following are legal babel expressions:

X1
X2 + x3

Dynamic Variable Access

In some cases, it may be preferable to access variables as numbered entities in a list rather than by their names. We call this dynamic variable access. Babel exposes this functionality through an implied list or array of variables called var. When writing a Babel expression, one can retrieve a value from this list through the index operator: [expr r_{I}. The index expression expr_{I} is an expression that will retrieve expr ${ }^{\text {th }}$ variable from the list of variables as ordered in the problem setup screen. Generally, use of var takes the form:

```
var [expri]
```

Where expr ${ }_{I}$ is an expression that generates an index into the list of variables. In the simplest case, expr r_{I} can be a literal integer, like 4, giving var[4], which would be interpreted as the value of the $4^{\text {th }}$ variable declared on the problem setup screen. If the user writes a more complex expression for expr ${ }^{\prime}$, the result is rounded to the nearest integer.

Math Objective - locator_offset

```
    Function Name locator_offset Delete
    Expression
    sqrt(var[1]^2 + var[2]^2 + var[3]^2)
```

Figure 3: Function Containing a Dynamic Variable Access (var) Expression

Given the following example setup:

Input								
Name	x3	\times	1	Min Val		Add		
Name						Max Val	Step Size	
x_first				0		10	0	
x_seconds				0		10	0	
x3				-5		5	0	
$\times 4$				-5		5	0	
$\times 5$				-5		5	0	

Table 1: Example uses of Var

var[1]	Retrieves the value for x _first when being evaluated
var[3]	Retrieves the value for x 3 when being evaluated
$\operatorname{var}[1+4]$	Retrieves the value for x 5 when being evaluated. This example illustrates that the value inside the square brackets may be any arbitrary expression.
var[ceil(ln(x_first)) + 2]	Retrieves the value: - $x 3$ if x first is between 0 and 2.718 (e) - $x 4$ if x_{-}first is between 2.718 and 7.38 - x 5 if x _first is between 7.38 and 10 This example illustrates that functions may be performed on indexes to achieve some kind of distribution. Care must be taken in making sure the result of the expression is greater than 1 and less than or equal to the count of the variables.


```var [ min( ceil( x_first ^ X_second, ), 5 0 ) ] // one may use whitespace // to format as they see fit // for readability```	Retrieves the value:   - x ffirst if x _first raised to $\mathrm{X}_{-}$second is less than or equal to 1.0 (given the bounds of the variables it is not possible for ( $\mathrm{x}_{-}$first $)^{\mathrm{x}} \mathrm{S}^{\text {Second }}$ to be less than 0 ).   - X_second if $x$ _first raised to $X_{-}$second is between 1.0 and 2.0   - x 3 if x _ first raised to X _second is between 2.0 and 3.0   - (theoretical) $x 50$ if x _first raised to $X_{-}$second any value greater than 49 .

It is illegal to write $\operatorname{var}[0]$, or $\operatorname{var}[$ expr $]$ where expr evaluates to a value that is less than 1 or greater than the number of variables declared in the problem setup.

The main use case for var is for sum and prod, see Loops with sum and prod

## Binary Operators

Many of the common binary operators are supported within babel.
Table 2: list of binary operators

$\operatorname{expr}_{L}+\operatorname{expr}_{R}$	Addition, evaluates to the sum of $\operatorname{expr}_{L}$ and $\operatorname{expr}_{R}$
$\operatorname{expr}_{L}-\operatorname{expr}_{R}$	Subtraction, evaluates to the difference between expr $\operatorname{lox}^{\text {and }} \operatorname{expr}_{R}$
$\operatorname{expr}_{L}{ }^{*} \operatorname{expr}_{R}$	Multiplication, evaluates to the product of expr ${ }_{L}$ and $\operatorname{expr}_{R}$
$\operatorname{expr}_{L} / \operatorname{expr}_{R}$	Division, evaluates to the quotient of expr ${ }_{L}$ and $\operatorname{expr}_{R}$
$\begin{gathered} \operatorname{expr}_{L} \wedge\left(\operatorname{expr}_{R 1}\right) \\ \operatorname{expr}_{L} \wedge \exp _{R 2} \end{gathered}$	Exponentiation, evaluates to the $\operatorname{expr}_{L}$ raised to the power of $\operatorname{expr}_{R}$.   Note 1: Exponentiation of decimal values is supported. Negative base numbers raised to decimal exponentiation will trigger the error flow resulting in NaN .   Note 2: Negation of expr $r_{L}$ as a higher precedence than exponentiation, meaning $-3^{\wedge} 2$ is interpreted as $(-3)^{\wedge} 2$ which is 9 .
$\operatorname{expr}_{L} \% \operatorname{expr}_{R}$	Modulus, the remainder from dividing expr $\mathrm{ef}^{\text {by }}$ expr $_{R}$
$\operatorname{expr}_{L}<\operatorname{expr}_{R}$	Strictly-less, true if expr ${ }_{L}$ is less than (but not equal to) expr ${ }_{R}$
$\operatorname{expr}_{L}<=\operatorname{expr}_{R}$	Less-or-equal, true if expr $\sim_{L}$ is less than or equal to expr $r_{R}$
$\operatorname{expr}_{L}>\operatorname{expr}_{R}$	Strictly-greater, true if expr ${ }_{L}$ is greater than (but not equal to) expr ${ }_{R}$.
$\operatorname{expr}_{L}>=\operatorname{expr}_{R}$	Greater-or-Equal, true if expr ${ }_{L}$ is greater than or equal to expr ${ }_{R}$

Note that the boolean (true/false) operations are only supported for constraint expressions and only at the top-level. Thus, the expression $x 1>(x 2+2)$ is valid for a constraint function, but the expression ( $\mathrm{x} 1>\mathrm{x} 2$ ) +2 is not valid in any context.

## Binary Functions

Babel supports two binary functions:
Table 3: List of Binary Functions

$\min \left(\operatorname{expr}_{L}, e x p r_{R}\right)$	The lowest value resulting from expr $\mathcal{L}_{L}$ or $\operatorname{expr}_{R}$
$\max \left(e x p r_{L}, e x p r_{R}\right)$	The highest value resulting from the expr $r_{L}$ or expr $r_{R}$
$\log \left(e x p r_{B}, e x p r_{N}\right)$	The logarithm of expr ${ }_{N}$ with base expr ${ }_{B}$

## Unary Operators

Babel supports negation as a unary operator
Table 4: List of Unary Operators

- expr	The negated value of the expression, equivalent to $-1 *$ expr

## Unary Functions

Many common math concepts are expressed as unary functions in Babel.

Table 5: List of Unary Functions

sin(expr)	the sine value of expr, with expr assumed to be in radians
$\cos ($ expr )	the cosine value of expr, with expr assumed to be in radians
tan (expr)	the tangent value of expr, with expr assumed to be in radians
asin (expr)	the arc-sine value of expr, with expr assumed to be in radians
acos (expr)	the arc-cosine value of expr, with expr assumed to be in radians
atan (expr)	the arc-tangent value of expr, with expr assumed to be in radians
sinh (expr)	the hyperbolic tangent value of expr
cosh(expr)	the hyperbolic cosine value of expr
tanh(expr)	the hyperbolic tangent value of expr
cot (expr)	the cotangent value of expr, with expr assumed to be in radians
ln(expr)	the natural logarithm of expr (log base e of expr)
log(expr)	the decimal logarithm of expr (log base 10 of expr)
abs (expr)	the absolute value of expr
sqrt (expr)	the square root of expr
cbrt (expr)	the cube root of expr
sqr(expr)	the value of expr to the power of 2
cube (expr)	the value of expr to the power of 3
ceil (expr)	the lowest integer value greater than expr
floor(expr)	the highest integer value lower than expr
sign(expr)	the sign of expr

## Loops with sum and prod

It is often desirable to take the sum or product of a set of values, applying a uniform function to each value first. This is done frequently in mathematics and typically denoted by capitol sigma and capitol pi.

For example:

$$
\sum_{i=1}^{50}\left[\left(x_{2 i-1}^{2}-x_{2 i}\right)^{2}+\left(x_{2 i-1}-1\right)^{2}\right]
$$

We can express this in babel as

```
sum(
 1,
 50,
 i -> (
 (var[2*i - 1]^2 - var[2*i])^2
 +(var[2*i-1] - 1)^2
)
)
```

The two functions within babel that perform aggregation (ie 'loops') are sum and prod:

Table 6: sum and prod details

```sum( \(\operatorname{expr}_{L}\), \(\operatorname{expr}_{U}\), indexAlias \(->\) expr \(_{A}\) )```	Adds the results from running $\operatorname{expr}_{A}$ once for each integer value indexAlias in the inclusive range [ $\operatorname{expr}_{L}$, expr $\left._{U}\right]$ together.
```prod \(\operatorname{expr}_{L}\), expru, indexAlias \(->\) expr \(_{A}\) )```	Multiplies the results from running $\operatorname{expr}_{A}$ once for each integer value indexAlias in the inclusive range [expr ${ }_{L}$, $\left.\operatorname{expr}_{U}\right]$ together.

For each evaluation of $\operatorname{expr}_{A}$, a new variable with the name specified in indexAlias is given a value in the range. The variable (not expression) defined in indexAlias is only available to $\operatorname{expr}_{A}$, and must follow the variable name guidelines. In this sense, sum and prod allow us to specify a new temporary variable that may be given many different values on any one objective or constraint evaluation.
A typical value for indexAlias is simply the $\mathbf{i}$, for example:
$\operatorname{sum}(1,10, i \quad->x 1 * i)$
indexAlias can be any valid variable name. It is often best to pick a name that makes sense in the context of the model.

EG, if the $7^{\text {th }}$ through $12^{\text {th }}$ variables were TRUSS lengths, it might make sense to use the variable TRUSS_ID:
prod(7, 12, TRUSS_ID -> ciel(var[TRUSS_ID] * sqrt(desity_var))
)
It can also be a mathematically-understood unicode text such as $\beta$, for example:
$\operatorname{sum}(1, \operatorname{ceil}(\operatorname{sqrt}(\operatorname{target})), \beta->x 1+\operatorname{var}[\operatorname{ciel}(\operatorname{sqrt}(\beta))+x 4]))$

It is illegal to write $\operatorname{sum}(5,4, \ldots)$ or, more generally, $\operatorname{sum}\left(\operatorname{expr}_{L}, \operatorname{expr}_{U}, \ldots\right)$ where $\operatorname{expr}_{L}$ evaluates to a value that is less than expru.

It is legal to write a sum or product that is expressed over a zero range, that is a range in which the upper and lower bounds are equal.

- $\operatorname{sum}\left(\operatorname{expr}_{L}, \operatorname{expr}_{U}\right.$, indexAlias $\left.->\operatorname{expr}_{A}\right)$, where $\operatorname{expr}_{L}$ is equal to $\operatorname{expr}_{U}$, (eg sum (x1 + $2,2+x 1, \ldots)$ ), and will evaluate to the value 0.0 .
- Similarly, $\operatorname{prod}\left(\operatorname{exprL}\right.$, expr$U$, indexAlias $\left.->\operatorname{expr}_{A}\right)(\operatorname{eg} \operatorname{prod}(5,5, . .)$.$) will evaluate$ to 1.0 .


## Example: Arithmetic Series

Mathematics:

$$
\sum_{i=1}^{10} i
$$

Babel with sum/prod:

$$
\operatorname{sum}(1,10, i->i)
$$

Long form Babel:

$$
1+2+3+4+5+6+7+8+9+10
$$

## Example: Geometric Series

## Mathematics:

$$
\sum_{\text {nextTerm }=}^{\left\lceil\log _{2} \text { highValu } 1\right.} \frac{1}{2^{\text {nextTerm }}}
$$

Babe with sum/prod:
sum(1, ceil(ln(highValue)/ln(2)), nextTerm -> $1 / 2 \wedge n e x t T e r m)$

Long form Babel:
$1 / 2^{\wedge} 1+1 / 2^{\wedge} 2+1 / 2^{\wedge} 3+[\ldots]+1 / 2^{\wedge}(\operatorname{ceil}(\ln (h i g h V a l u e) / \ln (2))-1)+$ 1/2^(ciel(ln(highValue)/ln(2)))

## Known Constants

There are some constants which are already in the Babel library, so a user doesn't have to type out their value manually .

Table 8: List of Constants

$p i$	3.141592653589793
$e$	2.718281828459045

